Polarimetric SAR Image Classification Using Radial Basis Function Neural Network
نویسندگان
چکیده
منابع مشابه
Polarimetric SAR Image Classification Using Radial Basis Function Neural Network
This paper presents a robust radial basis function (RBF) network based classifier for polarimetric synthetic aperture radar (SAR) images. The proposed feature extraction process utilizes the covariance matrix, the gray level co-occurrence matrix (GLCM) based texture features, and the backscattering power (Span) combined with the H/α/A decomposition, which are projected onto a lower dimensional ...
متن کاملUnsupervised Image Classification by Radial Basis Function Neural Network (rbfnn)
This work extends the application of Radial Basis Function (RBF) neural network for the unsupervised classification of images. The radial basis function (RBF) network enables non-linear transformation followed by linear transformation to achieve a higher dimension in the hidden space. If classification is done in a high dimensional space, it is more likely to be linearly separable as compared t...
متن کاملFast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...
متن کاملTraining Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset
Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...
متن کاملRank M-Type Radial Basis Function (RMRBF) Neural Network for Pap Smear Microscopic Image Classification
In this paper we present the capability of the Rank M-Type Radial Basis Function (RMRBF) neural network in the classification of Pap smear microscopic images. From simulation results we observe that the RMRBF neural network has better classification capabilities in comparison with other RBF based algorithms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PIERS Online
سال: 2010
ISSN: 1931-7360
DOI: 10.2529/piers091221032301